Contribution of the cytoskeleton to the compressive properties and recovery behavior of single cells.

نویسندگان

  • Gidon Ofek
  • Dena C Wiltz
  • Kyriacos A Athanasiou
چکیده

The cytoskeleton is known to play an important role in the biomechanical nature and structure of cells, but its particular function in compressive characteristics has not yet been fully examined. This study focused on the contribution of the main three cytoskeletal elements to the bulk compressive stiffness (as measured by the compressive modulus), volumetric or apparent compressibility changes (as further indicated by apparent Poisson's ratio), and recovery behavior of individual chondrocytes. Before mechanical testing, cytochalasin D, acrylamide, or colchicine was used to disrupt actin microfilaments, intermediate filaments, or microtubules, respectively. Cells were subjected to a range of compressive strains and allowed to recover to equilibrium. Analysis of the video recording for each mechanical event yielded relevant compressive properties and recovery characteristics related to the specific cytoskeletal disrupting agent and as a function of applied axial strain. Inhibition of actin microfilaments had the greatest effect on bulk compressive stiffness ( approximately 50% decrease compared to control). Meanwhile, intermediate filaments and microtubules were each found to play an integral role in either the diminution (compressibility) or retention (incompressibility) of original cell volume during compression. In addition, microtubule disruption had the largest effect on the "critical strain threshold" in cellular mechanical behavior (33% decrease compared to control), as well as the characteristic time for recovery ( approximately 100% increase compared to control). Elucidating the role of the cytoskeleton in the compressive biomechanical behavior of single cells is an important step toward understanding the basis of mechanotransduction and the etiology of cellular disease processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical Behavior of an Ultrafine/Nano Grained Magnesium Alloy

The application of magnesium alloys is greatly limited because of their relatively low strength and ductility. An effective way to improve the mechanical properties of magnesium alloy is to refine the grains. As the race for better materials performance is never ending, attempts to develop viable techniques for microstructure refinement continue. Further refining of grain size requires, however...

متن کامل

Compressive Behavior of a Glass/Epoxy Composite Laminates with Single Delamination

The buckling and postbuckling behaviors of a composite beam with single delamination are investigated. A three-dimensional finite element model using the commercial code ANSYS is employed for this purpose. The finite elements analyses have been performed using a linear buckling model based on the solution of the eigenvalues problem, and a non-linear one based on an incremental-iterative method....

متن کامل

Mechanical Characteristics and Failure Mechanism of Nano-Single Crystal Aluminum Based on Molecular Dynamics Simulations: Strain Rate and Temperature Effects

Besides experimental methods, numerical simulations bring benefits and great opportunities to characterize and predict mechanical behaviors of materials especially at nanoscale. In this study, a nano-single crystal aluminum (Al) as a typical face centered cubic (FCC) metal was modeled based on molecular dynamics (MD) method and by applying tensile and compressive strain loadings its mechanical ...

متن کامل

Experimental Study of Mechanical Stabilization impact on Improving Compressive, Tensile and Flexural Strength of Adobe

Iran is one of the oldest countries in the world benefiting from adobe-based architecture; a method which has long been forgotten in the contemporary architecture of country. Considering the important role of Earth Blocks such as adobe in the world’s contemporary architecture and the wealth of Iranian adobe-based monuments, it is necessary to continue contemplating on ways to optimize adobe to ...

متن کامل

The new empirical formula to estimate the uniaxial compressive strength of limestone; south west of Tehran-Iran, as a case study

In many rock engineering projects, accurate identification of rock strength properties is very important. Uniaxial compressive strength is one of the most important features to describe the resistive behavior of rocks which is used as an important parameter in the design of structures especially underground openings. Determination of this parameter using direct methods, including uniaxial compr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 97 7  شماره 

صفحات  -

تاریخ انتشار 2009